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A thermotropic nematic phase of dipolar mesogenic polymers with long-range interactions is con-
sidered. Using a graphical representation of the corresponding path integrals for the grand canonical
ensemble, we derive a Dyson-type equation for the pair-correlation function. We calculate this cor-
relation function in the random-phase approximation, accounting for anisotropic steric repulsion,
dispersion, and dipole-dipole interactions between monomers. As an implication of the model, we
calculate the (anisotropic) dielectric susceptibility of a dipolar nematic polymer, which shows a

divergent behavior at some critical temperature.

PACS number(s): 61.30.Cz, 36.20.—r

I. INTRODUCTION

Properties of the liquid-crystalline polymers have at-
tracted considerable attention during the past decade
from both theorists and experimentalists; this interest
arises from the growing number of possible applications.
These systems have unique macroscopic phenomena, not
all of which have yet been well described. There is, how-
ever, a qualitative understanding that unusual proper-
ties of nematic polymers are caused by internal-chain
degrees of freedom and by a competition between this
internal-chain entropy and packing and dispersion forces
in the system. Microscopic calculations of the properties
of these materials facilitate understanding and control-
ling their behavior in various circumstances. This helps
the search for new materials with desired macroscopic
characteristics, because it relates the fundamental ma-
terial parameters with the specific molecular structure.
For main-chain polymers, the main molecular feature is,
obviously, the great length of this chain, but one could
expect the significant influence of other factors also.

The original analytical approach to the statistical de-
scription of a long semiflexible chain [1, 2] was developed
by many authors to incorporate the orientational order-
ing and equilibrium properties of the low-temperature ne-
matic phase [3,4]. Further developments in the theory of
nematic main-chain polymers include microscopic models
for curvature elastic constants [5-7] and the analysis of
the polar chain—when the mesogenic monomers possess
an electric dipole moment and are anchored with a same
direction along the chain [8-10]. Many interesting effects
are predicted for this latter case of so-called dipolar ne-
matic polymers; the most fascinating is the possibility of
a proper ferroelectric phase in this system. The search
for materials and conditions that would exhibit polar or-
dering in the absence of crystalline lattice is very active
now. Different authors examine various systems and the-
oretical approaches to this problem: from computer ex-
periments on dipolar liquids [11, 12] to phenomenological
[8] and microscopic [10] treatment of polarized polymer
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chains in the nematic phase. The possible ferroelectric
phase transition, which we have predicted in the mean-
field approximation, is an interesting and important phe-
nomenon. This transition is governed by the long-range
part of the pair-interaction potential, or in other words,
by the conditions on the sample surface. This is a new
type of ordering, stabilized globally by long-range forces
in contrast with typical Ising-like systems with the neigh-
bors interaction. Similar conclusions follow from Monte
Carlo and molecular-dynamics simulations [11, 12].

This unusual situation requires a detailed investiga-
tion of pair correlations, both positional and orienta-
tional. The statistical averaging involves an integration
over the whole sample volume of functions that essen-
tially do not decay. Therefore, a microscopic theory using
the mean-field approximation (i.e., ignoring long-range
correlations) and any phenomenology based on this con-
cept are insufficient to adequately describe polar ordering
in liquids. Knowledge of the pair-correlation function is
especially necessary in the case of polymers, where po-
sitions and orientations of (dipolar) monomers are, to a
considerable extent, predefined by the chain interaction.
One may expect certain alternations in the description
and predictions even for nonpolar polymers with vol-
ume interactions (i.e., dispersion). Note that semiflex-
ible chains at low temperatures are folded so that the
persistent length becomes exponentially large [3]. This
increase determines many practical effects in correspond-
ing materials [4, 7] and it is essentially governed by pair
correlations between monomers on the same chain. In all
other aspects the cited papers are based on the mean-field
approximation concept.

The purpose of this work is to investigate the com-
plicated problem of positional and orientational corre-
lations in a melt of semiflexible polymer chains, which
exhibit nematic ordering. We develop a diagram tech-
nique, similar to the calculation of the Green’s function
in solids, and provide the partial summation in the limit
of weak long-range interaction between monomers. We
distinguish three basic situations: (i) nonpolar monomers
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with a symmetric shape, interacting via dispersion forces;
(ii) monomers with electric dipoles and the correspond-
ing dipole-dipole interaction; and (iii) monomers possess-
ing steric dipoles (asymmetry of shape), which affects
the short-range packing correlations. In the general case
polymer materials may have any combination of disper-
sion forces with the other two interactions; in theoretical
models over the years all possible combinations of the
above mentioned have been considered in the framework
of the mean-field approximation. We obtain a general
Dyson-like equation for the pair monomer-monomer cor-
relation function P;(1,2) dependent on the separation
of corresponding monomers, their orientations and loca-
tions of each on its corresponding chain. We use the con-
cept of average probabilities, i.e., distribution functions
independent on the monomer’s number on its chain. In
this approximation we obtain a compact expression for
P>(1,2) in terms of spatial integrals and averages of the
long-range interaction potential. At the end of this paper
we illustrate the use of this pair-correlation function by
calculating the dielectric susceptibility of a dipolar ne-
matic polymer in paraelectric phase and compare it with
previously obtained results.

II. DIAGRAM TECHNIQUE

We model our system as a melt of polymer chains, each
having the same number N of mesogenic monomers, con-
nected by semiflexible spacers with effective rigidity €.
We will consider a bond probablity [7] Pg(i,¢ + 1)—the
conditional probability of subsequent monomers config-
uration in the absence of interactions other than bond-
ing interactions between the monomers. Previously this
has been concerned primarily with the relative orien-
tation of monomers. Here we extend this to account
for the relative positions as well. Thermotropic liquid-
crystalline phases can appear only if the monomers are
interacting with each other. We shall account for this
pair interaction by means of the Mayer’s function f;;, =
—1 + exp[—pBV (i, k)], where V (i,k) is the total poten-
tial of interaction between each pair of monomers in the
system; 8 = 1/T. In the next section we shall spec-
ify types of interactions considered in this paper: the
anisotropic steric repulsion, isotropic and anisotropic dis-
persion attraction, and the dipole-dipole interaction (for
this case we shall assume that monomers possess a per-
manent dipole moment, all pointed in the same direction
along the chain).

We use the formalism of the grand canonical ensem-
ble, in which it is more convenient to account for an ar-
bitrary amount of chains in the system that eventually
contributes only to the total system density. The grand
partition function of our system takes the form (compare
with [13])

E=1+ ) / I (1 + fik)ae Pre

chains
XTI;_ Pp(ia,ia + 1) DT (1)

where the index « specifies the different chains and ro-
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man indices describe monomers, which belong either to
the same chain (i) or to arbitrary chains. We denote
by po the (entropic) chemical potential of the chain o,
which determines the macroscopic density of the system.
The path integral in Eq. (1) is calculated over the whole
configuration DI' = II,II;_dr; du,;_, i.e., positions and
orientations of long axes of all monomers. The total pair
probability of the configuration of monomers a and b is
defined as

1 ..
P(a,b) = E/ Woi(l + fj)Mae™P#= L P (i, ia + 1)

8 (iq — )8 (iq — b) DT (2)

where the two § functions symbolically remove the inte-
gration over the configuration of the two given monomers.

At this point we use the graphical representation of the
path integrals above. Associate solid lines with the poly-
mer chain itself, e ##=II; Pp(iy,ia + 1), on which open
circles represent & functions, specifying the configuration
of the given monomers. Dashed lines will represent the
pair interaction (the Mayer functions fji). Figure 1(a)
shows the graphs to calculate the grand partition func-
tion, Eq. (1), in the limit of noninteracting chains. Fig-
ure 1(b) illustrates the approximate calculation of the
single-particle probability of a given monomer orientation

(a)

FIG. 1. Summation of graphs for (a) the grand partition
function in the limit fix = 0, Eq. (1), and (b) the single-
particle probability, Eq. (3).
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FIG. 2. The type of graph that we are not taking into
account where the number of chains is less than or equal to
the number of interactions between them.

u, which is determined by a nematic mean-field potential
U(u) [4,7]:

/e‘ﬁ"“HiqPB(ia,ia +1)8(iq — @)Dl

+/ e—ﬁuae—ﬁuaﬂiaHjﬁfjﬂiaPB(imia +1)
xPp(jp,jp + 1)8(ia —a)DLaDly +---

~ f L Ps(i,i + 1)ePUO8(i — )DL . (3)

The mean-field potential is determined by the system
density and pair interactions of a given monomer with
its surrounding

T .. .
U(u;,r;) = 7 ZZ/fijaG(Z,ja)P(Ja)dr]‘aduJ'a
a  jao

where G(a,b) is the representation of the total pair prob-
ability Eq. (2): P(a,b) = P(a)G(a,b)P(b).

The graph representation of Eq. (3), Fig. 1(b), does not
account for “interaction loops,” when the two monomers
on the same chain are indirectly interacting through the
other chain, Fig. 2, omitting terms such as

e Pro e PuaTl, T, P(ip,jp + 1) figia fiir

e P Py (igyia + 1)8(iq — a)DT,Dls  (4)

corresponds to the widely accepted random-phase ap-
proximation (RPA) and gives only a small error in a dense
system of long chains. We shall use this approximation
throughout this paper.

In the presence of pair interaction between monomers
the graph representation for the total pair probability
in the system is shown in Fig. 3. The first row in this

i
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(a)

FIG. 3. (a) Summation of graphs for the two-particle
probability P(a,b); (b) the Dyson equation for the total pair-
correlation function (shaded area represents the result of sum-
mation).

drawing gives, after summation, the “dressed” single-
particle probabilities P(a)P(b). The remaining graphs
form (in the RPA approximation) the Dyson-like equa-
tion for the pair-correlation function, so that P(a,b) =
P(a)P(b)[1 + g2(a,b)]. Single-particle properties of the
nematic polymer have been extensively examined else-
where [3,4, 7]; in this paper we concentrate on the corre-
lational part of the total pair probability. It is convenient
to write this equation in Fourier space, when it takes the
form

P(a)P(b)gz(a,b) = Ps(ta, us; @) = Pi* (ua, up; q) + p/ P (uq, u;; q)e @R < — 1+ exp[— BV (u;, ug; R)])

X Py (ug, up; q)dRdu;duy (5)

where p is the number density of monomers in the system and R = r; — rj is the separation of the two intermediate
interacting particles. In the following two sections we shall calculate first the zero-order (single chain) pair probability

Pz,(o) and then the long-range pair-correlation function P of interacting chains in the nematic phase.
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III. ZERO-ORDER APPROXIMATION

The graph P2(0)(a, b), which is zero order in interac-
tion, defines the correlation between monomers on the
same chain in the mean field. This is a so-called Green’s
function of the chain and its orientational properties have
been obtained and examined previously [3,4]. For our
purposes, however, we need the combined positional and
orientational dependence of this function. Therefore we
extend the traditional calculation of this Green’s func-
tion to incorporate relative positional coordinates of the
monomers a and b.

The main recurrence equation for the partial partition
function of £ monomers on the chain M} takes the form
(we keep our notations [7,10])

My (u,r) :/ Pg(u,u’,r — ') My_; (v, 1)
xe~ U/ T gy dr! (6)

where U(u) is the orientational mean-field potential
in the nematic phase, which must be determined self-
consistently. The initial condition for this recurrence se-
quence is My = 1 (in the absence of any link) and the
bond probability now is given by

Pp = _8 ) §(x' —r — L(u+u')) )

? 7 sinhQ 2 '

In this expression  is the parameter of bare flexibil-
ity of the bond between the two subsequent mesogenic
monomers (2 > 1 for semiflexible chains), and { is the
length of the monomer. It is convenient to rewrite the
recurrence equation in Fourier space

Q a') — '
Mk(u’q)zj meﬂ(u )e U(u')/T

e iW/R@w @I | (o, q)du’
©)

and transform it to a differential equation, valid for
Q > 1. In this equation there appears an effective q-
dependent mean field, which follows from Eq. (8). This
equation for the propagator go(1,2) takes the form (com-
pare with [4, 7])

QU (u)

N v e

0 . .. ’
[Bk‘/ﬁ +iQ(q - u)|go(u,u’; k, k')

= 5(11 - u’)&k,k; (9)

so that the pair probability for the chain Péo)(a, b) is
P (a,b) = /go(l,a)go(a,b)go(b, N)d(1)d(N).

As it has been obtained and discussed elsewhere [4, 7],
only the two lowest eigenstates of Eq.(9) are essential in
the limit of long chains.

In this paper we are interested in the long-range ef-
fects, certainly of the length scale much larger than the
monomer size [. Then the limit ¢/ < 1 can be applied
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throughout the calculations. In this case the terms with
spatial (or wave vector) dependence play the role of per-
turbations in this equation (compare with the case of
macroscopic elastic deformations [7,10]) and the two first
eigenfunctions take the form

Wo(u, ) = wo(w) — 3 (a - m)w (u)

022
+ 2A2

(q . n)zwo(u) 4+,

Wi(u,q) = wy(u) + é‘%(q -n)wo(u) + - -- (10)

where eigenfunctions wg,w; of the position-independent
theory [4] essentially are symmetric and antisymmet-
ric combinations of exp[3+/QJ/T(u - n)?] on the two
poles of the unit sphere of orientations u; parameter
A = 32(QJ/T) exp[—2+/QJ/T] <« 1 is the splitting of
the corresponding first two nonperturbed eigenvalues Ag
and A;. In these equations n is the nematic director and
J is the barrier height of the uniaxial mean-field orien-
tational potential: U =~ Uy — J(u - n)%. Ground-state
eigenvalues of the position dependent theory are

1-5

Ao(q) = Xo +90%S(q-n)? + Ql2—3—q2
272
+stl (q.n)2+..., -
0212 .
Ai(q) — Ao(q) =A -2 (@-m)*+--- (11)

A

where S ~ 1 — 3,/T/QJ is the nematic order parame-
ter. Let us note here that these formulas are obtained in
the limit of wave vectors, small enough that Qlg/A < 1.
Only, in this case, the magnitude of perturbation is small
in comparison with the eigenvalues splitting and the con-
ventional perturbation scheme is applicable. In the case
of very strong nematic ordering and finite wave vectors
q this inequality may no longer be valid (still at gl <« 1)
and Egs. (10) and (11) will be different, determined by
the version of perturbation theory for the two very close
levels. This limit of the present theory corresponds to
optical range, when the characteristic wavelength of ex-
ternal field is less than or comparable with the polymer
persistence length Qlg/A > 1. However, the long-range
tail of the pair-correlation function, which we are mainly
interested in, is defined by limitingly small wave vectors
and we can safely use these equations.

In the limit of position independent theory, ¢ = 0, the
pair probability of the two monomers on the same chain
is, as it has been obtained before [3, 4],

P (a,b) = w}(ua)wi (us)
+wo (ug)wr (Ug)wo (up)wy (ub)e_(A/Q)(k”_k"), (12)

which immediately leads to the expression for the single-
particle probability P(u) ~ exp[{/QJ/T (u-n)?] and the

estimate for the chain persistance length L., along the
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director, defined as Ly = lEkN=1 (u‘l"uf)nang:

Q 1—e &N
Loeg =20 (1 - T/Q)’ (13)

J
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where NNV is the total number of monomers on the chain
(see also [3,7, 14]).

In the general case, when both positions and orien-
tations of subsequent monomers are accounted for, this
same-chain pair probability acquires the following form:

1 2 2
P (a,b) = 7 (“’o<ua>wo<ub>wo(a>wo<b> + wo (Ua)wo (up) Wi (a) Wy (b)e ™ (A/D) (ke —ka) +2(20% (a-n) /A”k"‘k“)) , (19

where the normalization factor
92 12 ( q- n)2
A2

x(l_exp[—%(kb—ka)

PUCE ).

Zz =1+

and wave-vector-dependent eigenfunctions Wy(u, q) and
Wi(u,q) are given by Eq. (10). It is important for the
calculations below to note that all expressions for pair
properties of monomers in the system are determined
by symmetric and antisymmetric with respect to the
(u-n) sign reversal combinations of original nonpertubed
eigenfunctions, namely wZ(a)w2(b), [wo(a)w;(a)wd(b) +
w§(a)wo(b)wy (b)], and wo(a)w; (a)we(b)wy (b). This fact,
which is due to the large separation of next eigenvalues
Az, ... and the large number of monomers N on chains,
will greatly facilitate the solution of the Dyson equation
for correlation functions in Sec. IV.

To complete this section we show that important ex-
pressions for the single-particle probability P(u) and the
longitudinal persistance length L., remain unchanged
by the introduction of positional dependence in Eq. (14)
J

N ka
PO () = 2 3% PO,
Preh) =y 2 2 Y

[

in this, zero-order, approximation:

P(u) = /P;O)(u,u';r—r')du'dr’
= /P2(0)(u, u’;q = 0)du’ ,

N
Lyeg =Ingng Z/u‘l’usz(o)(ul,uk;q = 0)du;duy, .
k=1

We also introduce here the average pair probability of
the chain, which does not depend on numbers k& and k'
of the two monomers location on this chain. This aver-
age probability is an important characteristic of the long
chain (see [3, 4] for single-particle properties) because
the statistical correlation between monomers configu-
ration is essentially absent after the persistence length
k' — k > Lgseg/l. For chains with NI > Lgeg [which
only fully satisfy the continuous limit in the main re-
currence equation Eq. (9)] the majority of monomers are
not directly correlated by the chain interactions and their
relative configuration does not depend on their relative
location k' — k. Therefore we define the function

20 (1 1= exp[— &N + ZQTIZ(q~ n)2N]

1
~ Z~—2 wo (ug)wo(up)Wo(a)Wo(b) + X AN/ — 2002(q - n)2N/A )wo(ua)wo(ub)Wl (a)W1(b) | ,

(15)

so that the persistence length is still given by (13). In the following calculations we shall mainly use the average
probabilities and correlation functions and will omit the bar distinguishing these functions.

IV. CALCULATION OF GRAPHS

The main equation for the consequent diagrams, derived in Sec. II, takes the form for average, site-independent,
correlation functions:

P;(a,b) = P{”(a,b) + p / P9 (a,4) fi; Po(4, b)d(3)d(5) (16)

~ PZ(O) (uaa Up, Q) - p/ PZ(O) (ua; u;, q)eZ(qR),BV(un uj, R)PZ(uja Uy, q)duzdu]dR

ij
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where p is the system number density, R = r; —r; is the
monomer-monomer separation, and the Mayer’s function
fij is represented by two major parts: at large distances
(R >1) fij &= —BV(¢,7), while the steric repulsion de-
termines an anisotropic cutoff of the integral in Eq. (16),
fij = 0at R < &; [7]. In this framework the total
potential of long-range interactions V' (¢, ) between the
corresponding monomers is considered as a perturbation
over the reference system with only steric and chain in-
teractions. As we discussed in the Introduction, we con-
sider two parts in this long-range potential: the disper-
sion van der Waals forces and the dipole-dipole inter-
action between polar polarizable monomers. Note that,
although the tensor of monomer’s polarizability & deter-
mines the leading effect in dispersion potential, it can be

J
Qoo = P/
&ij

Q,)m:Qlo:P/5
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neglected in the first approximation for dipolar interac-
tion if monomers possess a large constant dipole moment
m. The third effect that influences the pair correlations,
which we shall discuss in this paper, is an asymmetry of
monomers shape. This steric effect belongs to the refer-
ence system, but it determines certain anisotropic effects
when it is accounted for in the low-distance (steric) cutoff
in integrals of long-range potentials.

As we discussed in Sec. III, all correlation functions
in our approximations can be represented through sym-
metric and antisymmetric combinations of original non-
pertubed eigenfunctions: w2 (i)w?(j), [wo(d)w: (3)w(5)+
w3 (2)wo(7)w1(5)], and wo(3)wy(¢)wo(j)wi(j). Hence we
need only three matrix elements to define all coefficients
in Eq. (16):

wj (i) TR BV (4, j, Ryj)wd (7)dRi; d(i)d(5) |

wg ())e" IR BV (i, j, Rij)wo(§)ws () dRizd(8)d(5) (17)

Qu=p / wo(i)wy (£)e* VRSBV (4, j, Rij)wo (§) w1 (5)dRijd () d(3) -

ij

This is a most general form for these matrix elements. We
may consider possible simplifications that would be in ac-
cordance with the already made approximations. Basic
perturbation equations for Pz(o) in Sec. IIl are written
in the limit ¢IQQ/A <« 1. Therefore, Fourier exponen-
tials in Qg4 can be expanded in powers of ¢R < 1 if the
corresponding potential V(R) decays at large distances
between monomers. This evidently is the case for disper-
sion interaction (V ~ 1/R®), whereas the dipole-dipole
interaction (Vgq ~ 1/R3) is not decaying quickly enough
to justify such an expansion. Therefore, we shall use the
expansion of the g-dependent exponential as the first step
of calculating the above matrix elements in the case of
van der Waals interaction between monomers (including
possible polar steric effects)

p . 1
Iij = 'f/ (1 + ZQaRa - 5‘1a¢1aRaRﬁ)
X Vodw (s, uj, R)O(R — &;5)dR (18)

where the step function ©(R—¢;;) defines the steric cutoff
on the distances less than the anisotropic form factor
&i; of monomers [15]. In the case of polar mesogenic
monomers interacting via dipole-dipole potential, the full
exponential exp[i(q - R)] must be accounted for and the
integral Z;; is a Fourier image of V44, calculated with the
anisotropic steric cutoff ©(R — §;;).

The result for the integral Z;; is known for the case of
anisotropic dispersion attraction between sterically sym-
metric (for example, spherocylindrical) monomers [7]:
approximately Z;; = A+ B(u; -u;)2+--- (A> B), so
that the mean-field potential coupling constant from this

f

interaction is 8J = BS. The actual dependence of Z;; on
the relative orientation of monomers long axes is much
more sharp, but for the qualitative consideration of this
paper the above expression through only the second Leg-
endre polynomial is sufficient. Only the matrix element
Qoo is nonzero in this case, Qoo =~ BUy + BJS + O(¢%1?).

In the case when mesogenic monomers possess a steric
dipole along monomers axes (with the magnitude s) [9]
the integral 7;; gets an additional, qualitatively different
term 5 (sl/d)[(q - w;) — (q - u;)]. This contribution is
asymmetric in one of the monomer unit vectors u; or u;
and therefore the matrix element Qg; becomes nonzero:
Qo1 ~ (¢/12)BUy(sl/d)(q-n). We just outline this possi-
bility here, while the main effort we spend on the inves-
tigation of a more simple system without steric dipoles.

When dipole-dipole interaction is present in our sys-
tem, the integral Z;; is calculated differently from
Eq. (18). This integration at finite wave vectors (g # 0)
does not exhibit the usual difficulty with the divergence
on the upper limit (the dependence on the sample shape)
because of the Fourier exponential e*@R) The limit
g — 0 has been examined in our previous paper [10].
We assume a spherical shape of the sample and calcu-
late all corresponding integrals consistently keeping this
assumption (see also [16]) if the result of this calcula-
tion is a shape-independent material property. In this
case, practical implications of these calculations, for ex-
ample, the dielectric susceptibility, are not affected by
the assumption about the system shape. Let us empha-
size that it is not always so and the correlations in the
system with dipole-dipole interaction should be treated
carefully in each particular case.

Assuming the spherical sample shape we obtain, ap-
proximately
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I..~ P (mi-a)(m;-q)
13 ~ T q2
P i@ry[(mi-R) . (mi-q)]
T /;ij e [ 78 +1 B (m; - dS),

(19)

where m is the electric dipole and the integral is cal-
culated over the surface of the excluded volume for the
relative positions of the two monomers—the low-distance
anisotropic cutoff at R = &;; =~ d+ (I —d)[(u; ‘R) + (uj-
R)] (here d is the thickness of the mesogenic monomer
d/l « 1). We assume that the long axis orientation of
each monomer u coincides with the orientation of its elec-
tric dipole. Then, for the spherical outer shape of the
sample and in the limit ¢ — 0 we have the estimate [10]
J
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T;; ~ 2 Bpm?(1—d/l)(u;-u;). Hence the matrix element
Q11 becomes nonzero, Q.1 ~ Bpm?*[F — (q-n)?/q¢* +
O(d/l;qd)].

Now we are in a position to solve the main equation
for the pair-correlation function Eq. (16). Substitute ex-
pressions for the perturbed eigenfunctions Eq. (10) to it
and introduce two dimensionless parameters that carry
separately the dependence on the wave vector and on
the chain contour length N: X(q) = (Q/A)(q - n)
and Y(IN) = (2Q/A)[1 — (1 — exp[-NA/Q])/(NA/Q)].
Note that, according to approximations we have made,
X < 1; in the limit X = 0 we should recover the space-
independent theory. In the limit of infinite chains we
have Y = 2Q/A; the case of very rigid chains without
hairpins (2/NA > 1) corresponds to the dependence
Y =~ N—the length of extended chains. We are looking
for the total correlation function in the form

Py(a,b) = Aw(a)wg (b) + Blw§(a)wo(b)ws (b) + wo(a)w:(a)wg(b)] + Cwo(a)wi (a)wo(b)w: (b) (20)

and we obtain for the coefficients A, B, and C in the assumption that Qo1 = 0 (no sterical dipoles):

Ao 1miXY(1+X?Y)0uB

(Y — iXY QooB)(1 + X2Y)

, C=
14 Qoo

and

5o iXY(1+ X2%Y)

1+Y9::1(1+ X?%Y)

(21)

(14 Qoo)[1+YQ11(1+ X2Y)] + X2Y2(1 + X2Y)Q00Q11

In most cases there is a general simplification of these
equations in the nematic polymer. Orientational ordering
appears in the system only at sufficiently large mean-field
potential and we always are within the limit Qgo > 1;
also Y > 1 and X <« 1 (longest waves limit). We may
then obtain the coefficients in the form of expansion, valid
at (2/A)ql < 1:

A 1 (1 _ x2 2Y2011(Y Qo0Q11 — 1) )
Qoo Qoo(Y Q11+ 1)(Qoo + Y Q11) )’
Y Qp0Q11 — 1
Q00(Y Q11 +1)(Qo0 + Y Q11)’
~ Y (1 _ x? Y Qoo(2Y Q11 — 1) )
YO +1 (YO11 +1)(Qoo+YQ11) /)

Equation (20), with Egs. (22) [or Egs. (21) in the de-
tailed form] for coefficients, defines the long-range limit
of the pair-correlation function in the nematic poly-
mer with various interactions between monomers. The
total pair probability of the two monomers configura-
tion, averaged over their positions along their chains, is
P(a,b) = P(a)P(b) + P2(a,b). We shall use this expres-
sion in Sec. V to calculate the dielectric susceptibility of
a nematic polymer, as an example of implication of the
general theory.

B~ -2iXY

(22)

c

V. RESULTS AND DISCUSSION

Let us, first of all, discuss the expression for the pair-
correlation function, Eq. (20), with coefficients in the

-
small-q limit, Eqgs. (22). At the distances R — oo (X —
0) we have for these coeflicients A — 1/Qgo < 1, B = 0,
and C = Y/(1 + Y Qi1). This is essentially the mean-
field limit, when P(a,b) = P(a)P(b). At small but fi-
nite wave vectors, coefficients can be effectively written
in a familiar form: A ~ 1/[1 + u?(q - n)2], etc. Note
that at vanishing polar interaction (Q11 < A/4Q <K 1)
there is an anomaly in the behavior of the odd-odd co-
efficient C. The even-even coefficient .4, which deter-
mines the average radial distribution function, shows an
anomaly at even lower values of dipole-dipole interaction
Q11 < A/2Qp0f2. Both these anomalies are, probably,
an artifact of simplifications made during the derivation
of a compact form of coefficients Egs. (22). The case
Q11 — 0 requires a more subtle treatment, which would
be beyond the scope of this paper.

When both averages of the long-range interaction, Qgo
and Q;;, are noninfinitesimal Egs. (22) remain reliable.
In the opposite limit of a strong dipole-dipole interaction
Q11 > (A/Q)Qoo one obtains a further simplification
of the correlation length u? ~ 4(Q2/A)3!? and the radial
distribution function of the two monomers separated by
the distance r along the director n is

Gl(r) ~ (BD/Q)%/2e7/, o~ (Lacg) /172
The positional correlations in the direction perpendicu-
lar to n decay very rapidly on the length scale of the
monomer size [. This means that the strong dipolar in-
teraction enhances the anisotropy of the chain end-to-end
distance in comparison with that obtained in the mean-
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field approximation. It would be important in the future
to investigate the properties of radial correlation func-
tions for polar and quadrupolar order parameters [11],
using the general form of the coefficients, Eqs. (21) and
the realistic q dependence of matrix elements Egs. (17).

Let us illustrate the implications of the developed
model on the example of dielectric properties of the
polymer liquid crystal. Consider the case when meso-
genic monomers do not possess a permanent dipole mo-
ment. In this case the long-range interaction between
these monomers and the macroscopic dielectric suscepti-
bility is determined by the molecular polarizability. We
associate the microscopic, orientation-dependent tensor
of polarizability &(u) with each monomer in the sys-
tem, & = a, I + (o) — ar)uu for general uniaxial
molecules. There is no direct dipole-dipole interaction
between monomers and therefore we may not anticipate
especially large correlation corrections. In this case it
could be possible to use the expansion of the general di-
electric constant in powers of an anisotropy of molecular
(monomers) polarizability [17]:

=5~ 5o(19 =0 [ PGaMOKGDDI) )

(23)

where é = [+4rx, K = (I+p(&)T)~ T, and the T is the
operator of dipole-dipole interaction 7' = (f —3uu)/R? at
gl < 1and R > d. Substituting expressions for &(u) and
P,, Egs. (20) and (22) with only Qoo # 0, and performing
the integration with anisotropic lower limit £;5 for the
monomers separation, we obtain an estimate in the (¢ —
0) limit for the static dielectric susceptibility of nonpolar
nematic polymer. In the (o) > a1 ) and (S — 1) limits
it takes the form

X =x.I+ (x)) — x1)nn,
poL

XL = 2 )
- Fpal

x|~ XL+ (pry = P af T (1 + Fxr)
~ J_ .
1— Fpay — Fpoy + (5 pay)2 32

(24)

For typical mesogenic molecules pa ~ 107!; it is clear
that the correlation correction is very large (/A > 1)
and, therefore, the expansion Eq. (23) [17] cannot be used
for calculating dielectric properties of nonpolar nematic
polymer. We are still unable to produce a reasonable the-
ory for the liquid-crystalline polymers in the case, when
the molecular polarizability is accounted for.

Now we return to the case of polar chains—when all
mesogenic monomers possess a large permanent dipole
moment m = mu, the direction of which is locked in
the same direction along the chain. We neglect the effect
of molecular polarizability &(u), assuming that the main
contribution to the macroscopic dielectric properties is
determined by the permanent dipoles. In this case matrix
element Qp; is nonzero, along with Qgo. For these qual-
itative arguments we can use the generalized Kirkwood-
Frohlich equation for the anisotropic liquid [18] together
with approximation x| > x 1 (see [8,10]). We have then

a simple relation between the components of the macro-
scopic susceptibility tensor and the correlator (uu)o be-
tween pairs of monomers at zero external field:

XL~ ﬁpm2(uffl)ﬂ,(,b)>o(5uu - nunu) )

Bpm? (uLa) u,(,b))gnun,,

x|~ ’
I 1 — 4w Bpm?2 (uLa)u,gb))onunu

(25)

Using again Eq. (20) for the pair-correlation function and
approximate expressions for matrix elements Qg and
Qi in coefficients A and C, Eq. (22), we readily obtain
the estimate for the macroscopic dielectric susceptibility
of a polar nematic polymer. The component of suscep-
tibility, which is perpendicular to the nematic director
n, is determined by the angular average of orientation of
the same monomer, whereas the longitudinal component
x| has also a contribution from the different particles
correlator:

16_7””"29_412( -n)
3 puz s ‘4

()]

at g — 0, (26)

2

2
XL~ §5Pm2(1 - 5) [1 +

~ Bpm?

. Bpm*(14+A+0)
T 1—4nBpm2(1+ A+C)’

X1l

where A and C are given by Egs. (21), and X =~ %(Q’

n), ~ 22

Let us recall that these expressions are obtained in the
limit of very small wave vectors ¢lf2/A < 1 [see Egs. (10)
and (11) and discussion therein] and essentially represent
an expansion in powers of this wave vector. It is interest-
ing to note that the main wave-vector dependence enters
these equations in the form (q-n) and it vanishes in the
particular case, when qln. In this case, the only non-
locality of dielectric susceptibility in Egs. (26) and (27)
is a result of ¢ dependence of matrix elements Qgo and
Q11, which is much weaker without a characteristic mul-
tiplier /A > 1. In the uniform case (¢ =0, X = 0) we
recover the previously derived expression for longitudinal
susceptibility [10] [with some numerical difference in de-
nominator, which is due to a more accurate accounting
for internal field effects in Eqgs. (25)]

_ pm?(20/A)
XIS T 4rpm2(2Q/A)’

(28)

or, qualitatively, x| = C/[T — T.], where T. ~ 3 x
10~ 1pm2Q(1— S)? exp[125] . This equation has set a ba-
sis of our arguments [10] about the possibility of a proper
ferroelectric phase transition in a thermotropic nematic
phase of dipolar main-chain polymers.

It is important to note that our consideration, based on
the diffusion-equation approximation for the chain statis-
tics and average, index-independent probabilities, is valid
only for the case of essentially folded chains, when the
majority of monomers do not have “memory” about the



2042

configuration on the chain ends. This restriction sets a
lower limit on the length of the chain, N > Q/A > 1,
in which our calculations are valid. Key equations for
position- and orientation-dependent statistical properties
of the polymer are written in the limit of very small
wave vectors Qg/A < 1, when the ordinary perturba-
tion scheme is applicable to the main equation (9) (see
Sec. III and discussion therein). It is not difficult to ex-
tend the description to effects with a shorter characteris-
tic wavelength, but it was beyond the scope of this paper
and, therefore, all particular expressions for coefficients
A, B, and C, Egs. (20) and (21), and dielectric susceptibil-
ity are given in the limit of most long wavelengths. We
have employed several other approximations along the
way, which are discussed in details in the text, in order
to illustrate qualitative effects and derive analytical ex-
pressions. Note, however, that the general approach and
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arguments of Sec. II, concerning the graph representa-
tion of the integrals in our grand canonical ensemble and
the Dyson equation for the pair-correlation function, are
valid independently on the above restrictions and may
provide a useful apparatus for calculation of properties
of main-chain liquid-crystalline polymers, in particular—
their orientational and polar ordering.
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